PHASE EQUILIBRIA IN SOLUTIONS OF CELLULOSE DERIVATIVES AND THE RHEOLOGICAL PROPERTIES OF SOLUTIONS IN VARIOUS PHASE STATES

M.Yu. Tolstykh, V.V. Makarova, G.B. Vasil'ev, V.G. Kulichikhin

A.V. Topchiev Institute of Petrochemical Synthesis RAS, Laboratory of Rheology of Polymers, Moscow, Russia

chipmunk2005@yandex.ru

Solutions hydroxypropyl cellulose (M_w =80 000) in water, dimethyl sulfoxide (DMSO), propylene glycol (PG), triethyl citrate (TEC) and polyethylene glycol M_w =1500 (PEG 1500) were investigated by microinterference method, polarization microscopy and viscosimetry. The phase-transition lines were constructed with the use of microinterference and polarization microscopy methods. In a certain temperature–concentration range, all solutions undergo a sequence of transitions typical for solutions of stiff-chain crystallizable polymers: isotropic and LC states separated by the two-phase corridor and, in some cases, the crystalline state. For HPC-water, HPC-TEC and HPC-PEG 1500 solutions the superposition of amorphous, LC, and crystalline equilibria is realized. Amorphous separation with LCST is observed for HPC-water, with UCST for HPC-TEC and HPC-PEG 1500.

Solutions occurring in various phase states were tested by rheological methods. These solutions demonstrate the typical rheological behavior of anisotropic solutions: the presence of yield stress and the extremum concentration dependence of viscosity with a maximum, when the LC phase appears, and a minimum, when it transforms into the 100% phase. In the case of single-phase solutions, viscosity increases with concentration, while for two-phase solutions, viscosity decreases with an increase in the fraction of the LC phase. The rheological data are found to be sensitive to phase transitions observed in solutions.